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Abstract: A prescription is given for computing anomalous dimensions of single trace

operators in SYM at strong coupling and large N using a reduced model of matrix quantum

mechanics. The method involves treating some parts of the operators as “BPS condensates”

which, in certain limit, have a dual description as null geodesics on the S5. In the gauge

theory, the condensate is similar to a representative of the chiral ring and it is described by

a background of commuting matrices. Excitations around these condensates correspond to

excitations around this background and take the form of “string bits” which are dual to the

“giant magnons” of Hofman and Maldacena. In fact, the matrix model approach gives a

quantum description of these string configurations and explains why the infinite momentum

limit suppresses the quantum effects. This method allows, not only to derive part of the

classical sigma model Hamiltonian of the dual string (in the infinite momentum limit),

but also its quantum canonical structure. Therefore, it provides an alternative method of

testing the AdS/CFT correspondence without the need of integrability.
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1. Introduction

Understanding the strong coupling limit of non-abelian gauge theories is still an outstanding

open problem in theoretical physics. Most of our understanding comes from Conformal

Field Theories (CFTs). According to the AdS/CFT conjecture, at large N and large

but fixed ’t Hooft coupling, we should find an effective geometrical description of these

theories in terms of perturbative string theory on an asymptotically AdS background [1].

Proving (or disproving) this conjecture is still an important open problem. However, much

evidence in its favor have been found in recent years. The best studied example of the

correspondence is the duality between N = 4 SYM theory in four dimensions and string

theory on asymptotically AdS5 × S5. More precisely, the Hamiltonian and Hilbert space

of N = 4 SYM theory on R × S3 are identified with the Hamiltonian and Hilbert space
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of the dual “quantum gravity” theory.1 One of the most significant obstruction to testing

the correspondence is our inability to make strong coupling calculations in SYM theory.

In practice, one can calculate the Hamiltonian of SYM theory only to a finite loop order.

Using the operator/state correspondence one maps this Hamiltonian to the Dilatation

operator of SYM on R
1,3. One finds that the Hamiltonian can be written as a model of

matrix quantum mechanics. In fact, the complete one-loop model was found in [3]. At

higher loops, the form of the Hamiltonian seems to be extremely complicated.

However, even with this limited knowledge, one can perform quite impressive tests of

the AdS/CFT correspondence. This is usually done by studying states of the gauge theory

with large R-charges. These states are dual to fast rotating strings in the dual gravity

theory. The use of these limits was first employed in [4]. These fast string limits can now

be used to even match the sigma model action of the dual string (in the appropriate limit).

There is an extensive literature on this subject so here we will refer the reader to the recent

review [5].

What about higher loops? It turns out that, in the large N limit and when acting

on single trace states, the SYM theory Hamiltonian exhibits a remarkable property: inte-

grability. This was first observed at one loop by Minahan and Zarembo [6]. Integrability

is also observed at two loops and it is argued to persist to all loops. An all-loop guess

for the Bethe ansatz has been presented in [7, 8]. In this language, one does not know

the Hamiltonian at all loops. Instead, one think of each field in the single trace operator

as a “particle” which experiences “scattering” with the other fields of the operator. The

S-matrix describing this scattering is what enters the Bethe Ansatz.

Integrability has also been found in the classical string theory [9]. This finding has also

been accompanied by a similar guess for the presumed quantum Bethe ansatz for the closed

strings [10].2 One can see that the Bethe equations are very similar on both sides of the

correspondence but they do not quite agree. In fact, all the disagreement can be encoded

in a single overall phase in the Bethe ansatz’ S-matrix [10]. Solving this discrepancy is still

an open problem.

In any case, one would like to know the explicit form of the Hamiltonian of SYM

theory at strong coupling. Of course, a systematic perturbative resummation is not feasible.

Therefore, one looks for a reduced model that can capture the main dynamics of this more

complicated system. They key to achieve this goal is to look at states that are nearly

supersymmetric.

This idea was originally put forward in [12, 13]. It was argued that the effective

dynamics of 1/2 BPS states can be described by a reduced quantum mechanical model

of a single matrix in an harmonic oscillator potential which, after diagonalization, can be

written as N fermions in an harmonic trap. One can describe semiclassical states of the

theory in terms of droplets in the single particle phase space. Reduced quantum mechanical

sectors are also known to arise in thermal N = 4 SYM on R × S3 [14, 15].

1The Hamiltonian of the String Theory is naturally defined as the generator of time translations along

the global time defined in the asymptotic AdS5.
2For a recent review about integrability and semiclassical strings see [11].
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For the 1/2 BPS states, the reduced model was amazingly confirmed by a SUGRA

calculation in [16], where it was found that all the 1/2 BPS solutions in IIB SUGRA can

also be classified in terms of droplets in a plane.

Generalizations of the reduced matrix model for 1/4 and 1/8 BPS states were proposed

in [17] in terms of multiple matrix models of commuting matrices. The gravity side of the

story for these states is still incomplete, but some recent progress has been made in [18].

Nevertheless, some important consistency checks for the proposal in [17] have been put

forward recently [19, 20].

One can also construct a reduced matrix model for near-BPS states [21]. One can

reproduce the energy of the so-called BMN states to all orders in the t’-Hooft coupling. One

also gets a nice geometrical picture of near-BPS states that has been amazingly confirmed

by Hofman and Maldacena using a purely classical string theory analysis [22]. We will

review this result below.

Therefore, even though we do not have a proof that the effective dynamics of scalar

operators is given by a reduced matrix model, we have non-trivial evidence that this is

indeed the case.

In this article we attempt to clarify the meaning of the matrix model calculations. In

particular, we give a precise proposal that relates the matrix model computations to the

more familiar operator mixing problem, which is the more familiar language used in the

context of integrability. This is done in terms of what we call “BPS condensates” which are

summarized in section 2. Instead of doing just doing a saddle point calculation as in [21], in

section 3 we we give a quite explicit form of the Hamiltonian of the reduced matrix model.

Moreover, our Hamiltonian can be easily adapted for generic 1/2 BPS backgrounds.

We also clarify how to obtain the giant magnons of [22] directly from the matrix

model calculation and how one can generalize these to the SU(3) sector of the theory.

For the SU(3) sector, which is discussed in section 4, the matching with the dual string

theory is more restricted since it turns out that one needs to understand the backreaction

to the 1/4 and 1/8 BPS condensates. In any case, we obtain a quantum description of

the giant magnons. More importantly, we show directly from the matrix model why the

infinite momentum limit of Hofman and Maldacena is really a classical limit. The possible

interpretation of magnon bound states in our formalism is briefly discussed in section 3.

We also show how the matrix model calculation gives not only the correct Hamilto-

nian for the string states (in the infinite momentum limit) but also the canonical structure

expected from the string theory dual. This is very encouraging since it would be very de-

sirable to match directly the sigma model of the string theory and its canonical structure

rather than having to solve for its spectrum. This would allow generalizations to other

less symmetric field theories. In section 5 we discuss the backreaction to the BPS conden-

sates and we explain why our method works in the strong coupling limit. Finally, in the

conclusion, we discuss the prospects to relate this procedure to the more familiar Bethe

Ansatz.
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2. The general idea of BPS condensates

Here we want to summarize the general idea of BPS condensates using the familiar single

trace scalar operators of SYM theory. In the next sections we will develop the details of

this method and its interpretation in terms of the dual string theory.

When doing perturbative calculations in either the gauge theory or the string dual one

always has to choose a classical background configuration to expand upon. In the gauge

theory side of the correspondence one can rephrase this as defining the expansion around

certain set of operators. To have some kind of “perturbative” control, one wants to expand

near protected BPS operators.

Here we want to rephrase this expansion in terms of the effective matrix model men-

tioned above. Lets start by considering a generic SU(2) single trace operator. One can

write this kind of state using the bosonized language introduced in [23, 24]:

Tr(Y Zn1Y Zn2Y · · · ) . (2.1)

In the next section we argue that these states are described by a quantum mechanical

matrix model of two complex matrices. For large ni one can see the Y s as impurities in an

otherwise 1/2 BPS operator Tr(Zn). In the excited state (2.1), the Znis look localy like

BPS states and we call them 1/2 BPS condensates. In the matrix model it then makes

sense to expand around a background of normal matrices: [Z, Z̄ ] = 0 and Y = 0. This

“classical” BPS background can be expressed as a distribution of eigenvalues of the matrix

Z. For the ground state, we will see that this distribution is simply a circular droplet. The

fluctuations δY are called “string bits” and they are dual to commutators between the Y

and the BPS condensates in the operator language:

Tr(Zn) → Tr([Y,Zn1 ][Y,Zn2 ] · · · ) ,
∑

i

ni = n . (2.2)

The states (2.1) serve as a basis for these excitations. The fluctuation δZ are the back-

reaction of the condensate and in this case we will see that they can be integrated out to

give an effective action for the transverse excitations on the classical BPS background.

In the dual string theory, we will see that for ni → ∞ the 1/2 BPS condensates become

classical and localize the ends of the string bits on the boundary of the circular droplet.

In the dual String Theory, the boundary of the droplet corresponds to a null geodesic

on R × S1. This is precisely the interpretation advocated recently in [22]. This will be

discussed in detail in the next section.

If the number of Y fields is comparable to the number of Zs, it makes sense to expand

around a state of the form:

Tr({ZnY m}) . (2.3)

Here the curly brackets denote symmetrization between the letters Y and Z. This state is

just a rotation of the 1/2 BPS state. For multi-trace operators, symmetrized states similar

to this one are 1/4 BPS [25, 26]. Small excitations around this state will be described by

turning on commutators that break the symmetrization,

Tr({ZnY m}) → Tr([Y, {Zn1Y m1}][Z, {Zn2Y m2}] · · · ) , etc. (2.4)
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One can find a basis for these excitations in analogy to (2.1),

Tr(Y {Zn1Y m1}Z{Zn2Y m2} · · · ) . (2.5)

Since the words {ZniY mi} look like 1/4 BPS states we call them 1/4 BPS condensates. As

in the case of the 1/2 BPS condensates this description is more useful when ni,mi → ∞.

As we will see, the dual interpretation is that, in this limit, the 1/4 BPS condensates

localize the ends of the string bits on null geodesic on R × S3.

In the matrix model language we should then expand around a “classical” configuration

of commuting normal matrices [Y,Z] = 0 = [Z, Z̄ ] = [Y, Ȳ ] = 0. This configuration can

be one of the 1/4 “droplets” of [17]. For the ground state we get a S3 distribution of

eigenvalues. The fluctuations around this background will correspond to the commutators:

δZ ' [Z, {ZniY mi}] , δY ' [Y, {ZniY mi}] . (2.6)

We discuss these fluctuations in section 4.

The generalization to SU(3) states should be obvious by now. For example, in the case

where we have many Y and Z fields and a few Xs, we can consider the following basis for

the transverse excitations

Tr(X{Zn1Y m1}X{Zn2Y m2} · · · ) . (2.7)

In the matrix model we expand around [Y,Z] = [Y, Ȳ ] = [Z, Z̄] = 0, X = 0. In this case

a fluctuation δY or δZ amounts to a breaking one the condensates and thus leaving this

restricted basis, e.g.

{ZniY mi} → [Z, {Zni−1Y mi}] . (2.8)

On the other hand, a δX fluctuation is just a commutator between an X and one of the

condensates.

We can now try to consider states with many Zs (for example) and similar quantities

of Y and X. In this case it make sense to expand in a basis like

Tr(XZn1Y Zn2 · · · ) . (2.9)

In the matrix model we diagonalize Z and expand around [Z, Z̄] = 0, X = Y = 0 just like

in the SU(2) case.

Finally we can have 1/8 BPS condensates by considering symmetrized combinations

{XniY miZpi}. In this case we expand around configurations with three normal commuting

matrices. The fluctuations are dual to the commutators between any of the fields and the

condensates just like for the SU(2) states.

3. 1/2 BPS condensates: the SU(2) sector

In this section we briefly review the 1/2 BPS states and their effective dynamics in terms

of a normal matrix model. We then consider generic SU(2) states an set up an effective

description in terms of a two matrix model similar to the one in [21]. We then construct the
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Hilbert space in terms of the 1/2 BPS condensates. We obtain the canonical commutator

relations for these states and explain how to obtain their classical limit. In doing so, we

recover the picture of the “string bits” of [17, 24] and explain its precise relation with the

“giant magnons” of [22]. Moreover, we match the canonical structure expected from the

dual string theory and also its sigma model in the limit of large λ and infinite angular

momentum. Finally, we comment on the a possible interpretation of the bound states

of [22, 27 – 29] in terms of the matrix model.

3.1 Review of 1/2 BPS states dynamics

The 1/2 BPS states of SYM theory are described by multitrace operator build out of a

single complex scalar: On1n2··· = Tr(Zn1) Tr(Zn2) · · · (see [30] and references therein).

They are eigenstates of the dilatation operator with dimension3

Γ̂|On1n2···〉 = (n1 + n2 + · · · )|On1n2···〉 = Ĵz|On1n2···〉 . (3.1)

It is well known that at one loop, the contribution from the D-term in the scalar

potential VD ∼ Tr|[Z, Z̄ ]|2 to the dilatation operator is canceled by fermion and gauge

loops [31]. One can translate this to the dual Hilbert space as,

〈On1n2···| Tr|[Z, Z̄ ]|2|On′
1
n′

2
···〉 = 0 . (3.2)

Since these states are protected by supersymmetry, we expect this to be true independently

of the gauge coupling.

From eqs. (3.1) and (3.2) it is natural to guess that the effective dynamics of these

states will be described by a normal gauged matrix model with an harmonic oscillator

potential [12, 30, 32, 33],

S =

∫

dt Tr(|DtZ|2 − |Z|2) , [Z, Z̄] = 0 . (3.3)

This model can be visualized as a reduction of SYM on R × S3 down to the zero mode of

a single scalar [17, 12]. The eigenstates of the matrix model can be expressed as antisym-

metric wave function of the complex eigenvalues zi and can be classified in terms of Young

Tableux [12]. Their quantum numbers match (3.1).

Moreover, in the large N limit generic coherent states are described by “droplet”-

like distributions of eigenvalues on the complex plane. For example, the ground state

ψ0 ∼ e− Tr(ZZ̄) will have a probability density,

〈ψ0|ψ0〉 =

∫

[Z,Z̄]=0
[dZdZ̄]|ψ0|2 ∝

∫ N
∏

i=1

d2zi e−2
P

i |zi|
2+

P

i<j log |zi−zj |
2

, (3.4)

which will be dominated by the saddle point of the exponential in the large N limit. Here

we have used the measure change for a normal matrix model which follows from the metric

ds2 = Tr(dZdZ̄) [34].

3In this paper we will make heavy use of the operator/state correspondence of SYM. We will go back

and forth between operators and states and we hope that the context will make clear which one we are

using.

– 6 –



J
H
E
P
0
1
(
2
0
0
7
)
1
0
1

In the limit N → ∞ one replaces the sums by density distributions and one extremizes

the functional

E[ρ] = −2

∫

d2zρ(z)|z|2 +
1

2

∫ ∫

d2z1d
2z2ρ(z1)ρ(z2) log |z1 − z2|2 , (3.5)

with the constraint N =
∫

d2zρ(z). Using the fact that the logarithm is the Green’s

function in two dimensions one obtains a circular droplet distribution of eigenvalues of

constant density given by [34]

σ = −∆W (z, z̄)

4π
= −∂∂̄W (z, z̄)

π
=

2

π
, (3.6)

where W (z, z̄) = −2|z|2 is the potential for the eigenvalues. Then, from the normalization

of the density one obtains the radius of the droplet: r0 =
√

N/2. The droplet approxi-

mation is very useful for calculating correlation functions in position space as we will see

below.

3.2 SU(2) states dynamics

A generic SU(2) operator has the form:

Tr(ZY ZZ · · · ) Tr(ZY Y Z · · · ) · · · . (3.7)

For these holomorphic states one still has that the D-term contributions add to zero at one

loop. Therefore, we expect that we can also ignore the D-terms from the effective matrix

model. The lack of supersymmetry can make this model much more complicated that the

1/2 BPS case. However one can argue along the lines of [17] that for the 1/4 BPS states

the corresponding matrix model is a simple rotation of (3.3):

S1/4BPS =
∑

α=Y,Z

Tr
(

|DtZα|2 − |Zα|2
)

, (3.8)

for normal commuting matrices [Zα, Zβ ] = [Zα, Z̄α] = 0.

At one loop, the anomalous dimension is again generated by the commutators from the

F-terms: Tr|[Zα, Zβ ]|2. We can again argue for an all-loop generalization [21] involving

two complex matrices and ignoring the D-terms:

S =

∫

dt Tr

[

∑

α

(|DtZα|2 − |Zα|2) −
g2
YM

(2π)2

∑

α,β

|[Zα, Zβ ]|2 + higher commutators

]

. (3.9)

The first three terms of the action come from the direct reduction of SYM on the S3 to

the zero mode of the matrices, and the higher commutators will come from integrating

out higher modes and fields.4 A similar matrix model arises from the one-loop dilatation

operator in the SU(2) sector [35, 36], however the canonical structure is very different.

4Here the SO(6) invariant potential of SYM can be written as
P

6

a,b=1
Tr|[Xa, Xb]|

2 =

2
P

3

α,β=1
Tr|[Zα, Zβ ]|2 + 2

P

3

α,β=1
Tr|[Zα, Z̄β ]|2, where Z = 1√

2
(X1 + iX2) etc. The last term in the

potential is the D-term that we ignore in this matrix model.
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As in any quantum system one chooses a particular classical configuration for which

to define the perturbation theory. To define a consistent perturbative expansion one needs

to find stable classical configurations. In our case, we know that in the large N limit (and

with Y = 0) the normal matrix model [Z, Z̄] = 0 can be described by droplets on the single

particle phase space of the eigenvalues of Z. Moreover, these configurations are stabilized

by SUSY. It then makes sense to expand around these “classical” solutions. Since the

classicality is only statistical, one needs a prescription to define this expansion. We do this

in the following way. First write as usual Z → Z + δZ, and we diagonalize the background

Z. Then, we treat the eigenvalues zi as random numbers with probability distribution

∼ exp(−2
∑

i |zi|2 +
∑

i<j log |zi − zj|2). The resulting operators and states of the Hilbert

space will depend on zi. Therefore, we define the inner product to be the statistical average

of the usual one:

〈φ|Ô|φ̃〉 ≡
∫

∏

i d
2zi|ψ0({zi})|2〈φ({zi})|Ô({zi})|φ̃({zi})〉

∫
∏

i d
2zi|ψ0({zi})|2

. (3.10)

In the large N limit we can use the saddle point approximation as before.

At this point, our procedure is pretty much equivalent to the one in [37, 38], but the

approach presented here is simpler and allows generalizations beyond the SU(2) sector as

we will see in the next sections.

3.3 1/2 BPS condensates and string bits

We can now calculate the effective hamiltonian for the Y fields on the background of Z.

As we discussed before, we expand Z → Z +δZ. It is easy to see from the action (3.9) that

the backreaction δZ enters quadratically into the action. Therefore, we can integrate it out

and get an effective action for the Y field only. This will produce higher order interactions

for the Y field. At this point, we will ignore these interactions. We will come back to them

in section 5.

The remaining part of the action (3.9) is,

S =

∫

dt
∑

i,j

[

Ẏ j
i (Ẏ )ij − w2

ijY
j
i (Y )ij

]

. (3.11)

where we have taken the A0 = 0 gauge, the dots indicate time derivatives and,

ωij =

√

1 +
λ

(2π)2
|zi − zj |2 , (3.12)

with zi the eigenvalues of the background Z matrix. These eigenvalues will be determined

using the statistical weight defined in the previous section. Here we have normalized the

diagonal matrix so that zi = rie
iφi with ri ≤ 1.

The Hamiltonian that follows from the action (3.11) can be written as,

H(2) =
∑

i,j

ωij

[

(A†
Y )ji (AY )ij + (A†

Ȳ
)ji (AȲ )ij

]

, (3.13)
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where the creation operators are given by

(A†
Y )ji =

√

wij

2

[

Y j
i − i

√
wij

(πY )ji

]

, (3.14)

(A†
Ȳ

)ji =

√

wij

2

[

Ȳ j
i − i

√
wij

(πȲ )ji

]

. (3.15)

Here πY and πȲ are the canonical momenta to the coordinates Y and Ȳ respectively. They

obey the usual canonical commutator relations,

[Y j
i , (πY )lk] = iδl

iδ
j
k , [Ȳ j

i , (πȲ )lk] = iδl
iδ

j
k , (3.16)

with all other commutators equal to zero. One can then easily derive the standard oscillator

commutator relations,

[(AY )ij , (A
†
Y )lk] = δl

iδ
j
k , [(AȲ )ij , (A

†
Ȳ

)lk] = δl
iδ

j
k , (3.17)

with all other commutators equal to zero. Note that we have assumed that the fermions

cancel the zero-point energy from normal ordering the operators in (3.13).

We can now construct the Hilbert space of states. With our normalization a generic

single trace state takes the form

|n1, n2, . . . , nL〉 =
1

NL/2
Tr(A†

Y ψn1
(Z)A†

Y ψn2
(Z) · · ·A†

Y ψnL
(Z))|0〉Y , (3.18)

where,

ψn(Z) =
√

1 + nZn , (3.19)

and |0〉Y is the usual vacuum for Y defined by AY |0〉Y = AȲ |0〉Y = 0. The wavefunctions

ψn(Z) are dual to the 1/2 BPS condensates. In fact as we will see they will localize on an

S1 at large n just like the 1/2 BPS states. This is the infinite momentum limit. The A†
Y

excitations are called “string bits” [17, 21] and as we will see they have a dual description

as the “giant magnons” of [22].

It is easy to verify the orthonormality of these states using our inner product prescrip-

tion:

〈n1, n2, . . . , nL|n′
1, n

′
2, . . . , n

′
L〉 ≈

L
∏

l=1

∫

[dDl]ψnl
(zl)

∗ψn′
l
(zl) =

L
∏

l=1

δnl,n
′
l
, (3.20)

where
∫

[dD] =
∫ 1
0 drr

∫ 2π
0 dφ/π is the integration across the droplet, and we are assuming

the generic case where not all of the ni are equal so we ignore the cyclicity of the trace.

Now lets consider calculating the expectation value of some observable, say the Hamil-

tonian (3.13). After doing the usual planar contractions of the AY s one can always reduce

the problem to a product of integrals over the droplet. A useful property of the 1/2 BPS

condensates is

Zψn(Z) =

√

n + 1

n + 2
ψn+1(Z) . (3.21)

– 9 –
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Under the inner product (3.20) one then sees that Z and Z̄ can be treated as the operators

Ẑ† and Ẑ with the property:

Ẑ†|n〉 =

√

n + 1

n + 2
|n + 1〉 ≡ r̂eiφ̂|n〉 (3.22)

Ẑ|n〉 =

√

n

n + 1
|n − 1〉 ≡ e−iφ̂r̂|n〉 , (3.23)

(3.24)

where we define

r̂ =

√

n̂

n̂ + 1
, eiφ̂|n〉 = |n + 1〉 . (3.25)

Note that 〈r̂〉 ≤ 1 and thus as the notation suggests, this will become the operator

that measures the radial distance of the droplet. We also observe that n̂ is the momentum

conjugate to φ̂, [φ̂, n̂] = i, or in terms of r̂, p̂φ = r̂2/(1−r̂2). From the canonical commutator

relation we can derive,

[φ̂, r̂] = i
(1 − r̂2)2

2r̂
. (3.26)

This indicates that our system is constrained, which is not surprising since we are restricting

our Hilbert space by choosing these special SU(2) states. As we will see, this is exactly

the expected canonical structure for the SU(2) states in the string theory dual after an

appropriate gauge choice.

It is easy to show that for any function f(Z, Z̄) with a power law expansion,

∫

[dD]ψn(z)∗f(z, z̄)ψn′(z) ∼= 〈n|◦◦f(Ẑ†, Ẑ)◦◦|n′〉 , (3.27)

where ◦
◦
◦
◦ denotes anti-normal ordering with respect to the operators Ẑ†, Ẑ. Therefore, we

can write the quadratic Hamiltonian in our basis as

H(2) =

L
∑

l=1

◦
◦

√

1 +
λ

(2π)2
|Ẑ†

l − Ẑ†
l+1|2 ◦

◦ . (3.28)

Note that in contrast to [21], here we have given a quite explicit form of the Hamiltonian

for the “string bits”. The claim is that this “simple” Hamiltonian describes the SU(2) sector

of the gauge theory at strong coupling. However, as we will discuss in the next section, we

expect this Hamiltonian to be valid only to leading order in the ni → ∞ limit.

Moreover, note that the procedure presented in this section can be easily extended

to an arbitrary 1/2 BPS droplet. The only difference is that one needs to change the

integration
∫

[dD] to the corresponding integration over the deformed droplet. Moreover,

the orthogonal wavefunctions ψn(Z) will no longer have the simple form Zn. It would be

interesting to study Giant Magnons in generic 1/2 BPS geometries using this formalism.
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a) b)

Figure 1: In figure a) we show the usual giant magnons at infinite momenta ni → ∞. The lines

are identified with the “string bits” Y j

i and the edges with the 1/2 BPS condensates Zni . Here

the disk is mapped to an S2 ⊂ S5 so that the edge is the equator of the S2. Finite ni effects will

delocalize the ends of the magnons away from the equator as shown in figure b).

3.4 Classical limit and the dual string theory

In Quantum Mechanics one usually recovers the classical limit by taking ~ → 0. This

makes the canonical commutators vanish, [x, p] = i~ → 0 so that x and p become simple

classical observables. For constrained systems the classical limit can be trickier. In our

case we can see from (3.26) that the classical limit is reached by taking states for which

〈r̂〉 → 1, or 〈n̂〉 → ∞.5 This is precisely the localization on the edge of the droplet which is

correlated to the limit where the Y impurities are “far away”. This limit also takes away

the ordering ambiguities from the Hamiltonian which becomes

H(2) ≈
L

∑

l=1

√
λ

π
sin

(

φl − φl+1

2

)

, (3.29)

where we have taken the large λ limit to compare with the string theory.

This is precisely the Hamiltonian of the “giant magnons” of [22]. In fact, the whole

picture is exactly the same: we can picture the Y j
i as an excitation (string bit) joining

two eigenvalues zi and zj which become localized at the edge of the droplet when n → ∞.

In fact, taking n → ∞ with ∆φ fixed is precisely the Hoffman-Maldacena limit. Here,

however, we have a full quantum description of the system. One can see that finite n

effects will delocalize the ends of the string bits and make them “fuzzy” on the S2 (figure

1). Finite n effects were considered recently in [39] for a single giant magnon. Their results

confirm that the ends of the giant magnon are delocalized from the equator at finite n.

The relation between the momentum of the magnons and the angles on the droplet

can be seen more clearly by Fourier transforming as in [21]. For example, consider the

following asymptotic state,

|ψ(p)〉 = lim
∆→∞

lim
n→∞

∆
∑

x=−∆

eipx Tr(· · ·Y †Zn+xY †Zn−xY † · · · )|0〉Y , (3.30)

5Note that in our conventions ~ = 1.
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where we first take the limit of infinite separation n → ∞. One can show that these states

are approximately orthogonal in this limit.

For condensates of infinite angular momentum the operators (3.22) and (3.23) become

simple shift generators,

Ẑ|n〉 ≈ |n − 1〉 , Ẑ†|n〉 ≈ |n + 1〉 . (3.31)

Focusing on a single string bit, the effective Hamiltonian between these asymptotic states

is simply,

H
(2)
l,l+1 ≈

√

1 +
λ

(2π)2
Hl,l+1 , (3.32)

where,

Hl,l+1|nl, nl+1〉 = 2|nl, nl+1〉 − |nl − 1, nl + 1〉 − |nl + 1, nl+1 − 1〉 . (3.33)

This is the same asymptotic Hamiltonian found in the two matrix model of [38]. The

eigenstates of this Hamiltonian are simply plane waves of the form (3.30) with energy,

Easymp. =

√

1 +
λ

π2
sin2

(p

2

)

. (3.34)

Comparing with (3.29) we see that p ∼= ∆φ. Note that (3.34) is exactly the energy of

the Giant Magnons at strong coupling. Moreover, it gives the correct all loop dispersion

relation of the magnons that follow from the Bethe Ansatz [8].

We can also match the canonical structure of these string bits to the one found in the

string theory side. Since these are SU(2) states they must be a limit of the well known

rotating strings on R×S3 [5]. A well known limit of these strings is the one corresponding

to “long strings”: L → ∞ with λ/L2 = fixed ¿ 1. The canonical structure should not

depend on the particular limit we are taking since L is a conserved quantum number. One

can calculate the Polyakov action for these string using the following coordinates on the

S3 [24]:

Z = rei(t+φ) , Y =
√

1 − r2eiϕ . (3.35)

One then chooses the gauge, τ = t, pϕ = const., which is appropriate to compare with

the bosonized labeling of the states (3.18). This type of gauge was introduced in [40, 41].

One obtains the action,6

S ≈ L

∫

dt

∫ 1

0
dσ

[

r2φ̇

1 − r2
− 1 − λ

8π2L2
(r′2 + r2φ′2) + O

(

λ2

L4

)

]

, (3.36)

where one eliminates the time derivatives of all the higher order terms [40, 41] and,

L =
√

λ

∫ 1

0
dσpϕ , λ = g2

YMN = R4/α′2 . (3.37)

6In [24] we droped the factor of -1 since we were comparing anomalous dimensions only.
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The same action can be found from the spin chain formalism in the gauge theory at

one loop using the coherent states for the Cuntz algebra [24]. From this action we see that

the canonical momenta are

pr = 0 , pφ = L
r2

1 − r2
. (3.38)

This are precisely the constraints found above from the matrix model calculation!

The additional factor of L comes from taking the large L limit, since the total momen-

tum for the Z fields in the gauge theory becomes:

ĴZ =
L

∑

l=1

n̂l ≈ L

∫ 1

0
dσ

r̂2

1 − r̂2
. (3.39)

One can also reproduce the commutator algebra by using the classical Dirac brackets

for constrained systems [42]. The Dirac bracket is defined by

{A,B}D = {A,B}PB −
∑

i,j

{A, fi}PB(G−1)ij{fj, B}PB , (3.40)

where {, }PB is the usual Poisson bracket. Furthermore, the second class constraints are

given by the equations fi = 0 and G−1 is the inverse of

Gij = {fi, fj}PB . (3.41)

The constraints are given by:

f1 = pr , f2 = pφ − L
r2

1 − r2
. (3.42)

Then it is straightforward to verify

{φ, r}D =
(1 − r2)2

2Lr
. (3.43)

The comparison with the quantum theory is done as usual: [, ] = i{, }class.. One then

obtains precisely the continuum version of the commutators (3.26).

We now recall that in the last section we ignored the higher order interactions that

come from integrating out the backreaction δZ from the action (3.9). This amounts to

ignoring the backreaction to the 1/2 BPS condensates all together. As we have seen in this

section, the condensates behave classically only in the ni → ∞ limit. Therefore, we expect

that the quantum backreaction to the condensates will come as a 1/ni effect. It would be

interesting to confirm this by doing a direct matrix model calculation. This is, however,

outside the scope of this paper.

3.5 Multiple giant magnons and bound states

Suppose that we put many string bits together as in the state (2.1). One of two things can

happen: either we have the trivial addition of classical giant magnons, or we form a bound
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state. The first outcome happens if we take the formal ni → ∞ limit for each condensate.

The total energy in the limit of many string bits (L À 1) is,

H(2) ≈
L

∑

l=1

√
λ

π
sin

(

φl − φl+1

2

)

≈
√

λ

2π

∫ 1

0
dσ∂σφ =

√
λ

2π
∆φ . (3.44)

Here we assume that L does not scale in any way with λ. If we scale L as in the fast string

limit, λ/L2 ¿ 1 we get instead,

H(2) ≈ L

∫ 1

0
dσ

(

1 +
λ

8π2L2
φ′2 + · · ·

)

. (3.45)

This agrees with the classical string action (3.36) at one loop.

Understanding the emergence of bound states and of strings at r < 1, requires taking

into account 1/ni corrections. However, there are two effects that can be important for

understanding these corrections. First, as we discussed above we need to take into account

the backreaction term in the matrix model. Furthermore, one needs to understand the pos-

sible higher order interactions that can come from integrating higher spherical harmonics

in SYM. We do not have a good understanding of these issues at this moment. However,

suppose that these unknown interactions tend to normal order the Hamiltonian (3.28).

Then one can deduce the classical limit by constructing coherent states for the operators

Ẑl.

In fact, one can show that the states,

|z〉 = (1 − |z|2)
∞
∑

n=0

√
n + 1zn|n〉 , (3.46)

are indeed overcomplete coherent states of the operator Ẑ. The completeness relation is,

∫ 1

0

drr

(1 − r2)2

∫ 2π

0

dφ

π
|z〉〈z| = 1 . (3.47)

The classical Hamiltonian in the coherent state basis will be,

〈 : H(2) : 〉 =

L
∑

l=1

√

1 +
λ

(2π)2
|Zl − Zl+1|2 ≈

√
λ

2π

∫ 1

0

√

r′2 + r2φ′2 , (3.48)

where in the last step we have taken the strong coupling limit and then the continuum limit

corresponding to a large number of string bits. This is exactly the Nambu-Goto action for

a string on R × S2 in the static gauge [22].

Of course, the presence of bound states follows directly from the duality between this

action and the Sine-Gordon theory [22]. These bound states and its generalizations have

been studied recently in [27 – 29, 43 – 45].
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4. 1/4 and 1/8 BPS condensates: the SU(3) sector

The concept of 1/4 BPS condensates was discussed briefly in section 2. Here we will study

these condensates in detail as we did for the 1/2 BPS case. The general states we want to

consider are of the form

Tr(X{Zn1Y m1}Y {Zn2Y m2}Z · · · ) . (4.1)

In particular we are interested in the limit where ni,mi → ∞ with the number of “impu-

rities” outside of the condensates held fixed.

By the same arguments of the previous section, we expect an effective description

of generic SU(3) states in terms of a matrix model similar to (3.9) but now with three

complex matrices (α = X,Y,Z). There are two complications in the SU(3) case, however.

The fluctuations δX, δY and δZ cannot be integrated out so easily. This is actually a good

thing as these fluctuations have an interpretation in the operator language as we discussed

in section 2.

Moreover, it turns out that we need to include the D-terms to the action. This conclu-

sion follows from comparing with the string theory results (see below). We do not have a

purely field theoretical explanation for this but it seems to be a consequence of the fact that

we have less supersymmetry for these states and hence the one loop result is not protected

at strong coupling. The effective action for these states is then of the form,

S =

∫

dt Tr

[

∑

α

(|DtZα|2 − |Zα|2) −
g2
YM

(2π)2

∑

α,β

|[Zα, Zβ ]|2

− g2
YM

(2π)2

∑

α,β

|[Zα, Z̄β]|2 + higher commutators

]

. (4.2)

As we discussed in section 2, for large ni,mi the states (4.1) look like many “con-

densates” of 1/4 BPS operators involving Z and Y fields. Therefore we can try to define

our expansion around “classical” configurations with [Z, Y ] = [Z, Z̄ ] = [Y, Ȳ ] = 0. The

classical configurations will be the eigenstates of the 1/4 BPS action (3.8) in the large N

limit. In particular, we know that the ground state is given by ψ0 ∼ e− Tr(|Z|2+|Y |2) [17].

Thus, the energy functional that determines the geometry of the eigenvalue distribution is

E[ρ] = −2

∫

d4xρ(x)(|z|2 + |y|2) +
1

2

∫ ∫

d4x1d
4x2ρ(x1)ρ(x2) log(|y1 − y2|2 + |z1 − z2|2) ,

(4.3)

where we have used the measure change for two normal commuting matrices:

[dZdZ̄dY dȲ ] ∝
∏

i

d2zid
2yi

∏

k<l

(|yk − yl|2 + |zk − zl|2) . (4.4)

Doing a saddle point calculation as in [21] one finds that the eigenvalues form a sin-

gular distribution on an S3 ⊂ R
4 with radius r0 =

√
N/2. The fluctuations around this

background are the non-BPS parts of these operators.
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The motivation for this interpretation is the same as with the 1/2 BPS condensates. If

we consider calculating the one loop anomalous dimension for these states we see that the

planar contribution from the F-term and D-term commutators Tr|[Z, Y ]|2, Tr|[Z, Ȳ ]|2 will

be zero when contracted between the condensates. Only contractions between fields outside

the condensates and the condensates themselves will give rise to anomalous dimensions.

We interpret these interactions as fluctuations around the commuting background. The

interactions Tr|[Z,X]|2, Tr|[Z, X̄ ]|2 and Tr|[Y,X]|2, Tr|[Y, X̄ ]|2 that involve a condensate

and a transverse X field are interpreted as the fluctuation δX in the matrix model. Finally

the interactions Tr|[Z, Y ]|2, Tr|[Z, Ȳ ]|2 with Z or Y fields outside the condensate are just

the backreaction of the condensate δY and δZ.

4.1 Hilbert space and canonical structure

To simplify the discussion let us start with the states

Tr(X{Zn1Y m1}X{Zn2Y m2}X · · · ) . (4.5)

That is, let us ignore the backreaction to the 1/4 BPS condensates for the moment (δY =

δZ = 0). We then diagonalize the classical background of commuting normal matrices.

The effective Hamiltonian for the X fluctuations will have the same form as for the SU(2)

case (3.13) but now with the following dispersion relation

ωij =

√

1 +
λ

(2π)2
(|yi − yj|2 + |zi − zj|2) . (4.6)

Note that if we had ignored the D-terms, the dispersion relation would have an addi-

tional factor of 1/2:
√

1 + λ
2(2π)2

(|∆z|2 + |∆y|2).
In analogy with the 1/2 BPS condensates, the basis for this sector is

|n1,m1;n2,m2; . . . ;nL,mL〉 =
1

NL/2
Tr[A†

Xψn1,m1
(Y,Z) · · ·A†

XψnL,mL
(Y,Z)]|0〉X , (4.7)

with

ψn,m(Y,Z) =

√

(n + m + 1)!

n!m!
ZnY m . (4.8)

Using the saddle point approximation, the inner product can be reduced to integrals over

an S3 in the large N limit:

〈n1,m1; . . . ;nL,mL|n′
1,m

′
1; . . . ;n

′
L,m′

L〉 ≈
L

∏

l=1

∫

(dΩ3)l
Vol(S3)

ψnl,ml
(yl, zl)

∗ψn′
l
,m′

l
(yl, zl)

=

L
∏

l=1

δnl,n
′
l
δml,m

′
l
, (4.9)

where z, y become coordinates on the three-sphere, |y|2 + |z|2 = 1.
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Just like in the SU(2) sector, we can treat Z and Y as creation operators under our

inner product. They obey the following properties:

Ẑ†|ψn,m〉 =

√

n + 1

2 + n + m
|ψn+1,m〉 ≡ r̂1√

1 + η̂
eiφ̂1 |ψn,m〉 , (4.10)

Ŷ †|ψn,m〉 =

√

m + 1

2 + n + m
|ψn,m+1〉 ≡

r̂2√
1 + η̂

eiφ̂2 |ψn,m〉 , (4.11)

eiφ̂1 |ψn,m〉 = |ψn+1,m〉 , (4.12)

eiφ̂2 |ψn,m〉 = |ψn,m+1〉 , (4.13)

r̂1 =

√

n̂

n̂ + m̂
, (4.14)

r̂2 =

√

m̂

n̂ + m̂
, (4.15)

r̂2
1 + r̂2

2 = 1 , (4.16)

η̂ =
1

n̂ + m̂
. (4.17)

We can now calculate the following canonical structure:

[φ̂1, r̂1] = i
r̂2
2

2r̂1
η̂ , (4.18)

[φ̂1, r̂2] = −i
r̂2

2
η̂ , (4.19)

[η̂, φ̂α] = iη̂2 , (4.20)

and the conjugate momentum to φ̂α is P̂α = r̂2
α/η̂ = n̂α.

One can also show that the operators are antinormal ordered under the inner product

(see appendix A) and so the effective quadratic Hamiltonian is just

H(2) =

L
∑

l=1

◦
◦

√

1 +
λ

(2π)2

(

|Ŷ †
l − Ŷ †

l+1|2 + |Ẑ†
l − Ẑ†

l+1|2
)

◦
◦ . (4.21)

4.2 Localization and the classical limit

The localization of the 1/4 BPS condensates works just like for the 1/2 BPS case. Looking

at the canonical commutators (4.10) we see that for states with 〈n̂+m̂〉 → ∞ with 〈n̂〉/〈m̂〉
fixed will localize on an S3. The operators r̂α, φ̂α become commuting (classical) numbers

and we can drop the anti-normal ordering symbols on the Hamiltonian (4.21) and replace

the operators by classical coordinates on the S3, |Yl|2 + |Zl|2 = 1.

In the case of the 1/2 BPS condensates, the localization occurs from S2 → S1. The

form of the commutators (4.10) suggests that for the 1/4 BPS case the localization occurs

as S4 → S3. We will confirm this intuition by comparing with the dual string states. But

first lets try to match the canonical structure as we did with the 1/2 BPS condensates.

It is now important to remind the reader that the canonical structure found in the

string theory side is sensitive to 1) the string configurations that we are considering and 2)
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the gauge choice in the sigma model action. One could think that since the states (4.5) are

a restricted subset of the SU(3) sector (ignoring backreaction) one will not be able to match

the canonical structure found in the gauge theory side. However this is not correct since we

can always expand around these states and, if we take into account the backreaction to the

1/4 BPS condensates, we have a complete basis of states for this sector.7 Thus in this case

the particular canonical structure is tied to the choice of basis and therefore, in the string

theory side, it will be related to the gauge choice in the sigma model. We would have

obtained a different canonical structure had we expanded around 1/8 BPS condensates

which are of the form Tr({XnY mZp} · · · ) for example (see below).

We can now find the sigma model action for the SU(3) sector in the “fast string” limit:

JX → ∞, λ/J2
X = fixed, just like we did in the SU(2) sector. The form of the operators (4.5)

tells us that the correct gauge choice is the one that distributes the angular momentum

in X uniformly along the string. Looking at the commutators (4.10) one realizes that a

convenient spacetime coordinate system for these strings is,

Z =
r1√
1 + η

ei(t+φ1) , Y =
r2√
1 + η

ei(t+φ2) , X =

√

η

1 + η
eiϕ , (4.22)

where r2
1 + r2

2 = 1. We now choose the gauge

t = τ , pϕ = const. (4.23)

Following the standard procedure of eliminating time derivatives for spatial derivatives [40,

41] in the sigma model one finds (see appendix B),

S = L

∫

dτ

∫ 1

0
dσ

[

r2
1

η
φ̇1 +

r2
2

η
φ̇2 (4.24)

−1 − λ η

2(4π)2L2(1 + η)2

(

η′2

4η
+

∑

α=1,2

(r′2α + r2
αφ′2

α )

)

+ O
(

λ2

L4

)]

.

We see that the canonical structure is exactly as in the matrix model calculation:

pφα
∼ r2

α/η with the other momenta set to zero. In fact, one can confirm the continuum

version of the commutators (4.18) - (4.20) by using the Dirac brackets with the following

constraints:

f1 = r2
1 + r2

2 − 1 , f2 = pr1
, f3 = pr2

, f5 = pφ1
− Lr2

1/η , f6 = pφ2
− Lr2

2/η . (4.25)

The localization on the S3 can be understood in the same way as with the 1/2 BPS

condensates: it correspond to the classical limit η → 0.

Note however, that unlike in the SU(2) sector, the classical Hamiltonian that follows

from the action (4.24) does not match with the naive classical limit of the matrix model

Hamiltonian (4.21) at one loop. This is indeed not surprising since we are ignoring the

backreaction to the condensates which is unavoidable in the SU(3) sector. We will come

back to this point in section 5.

7Note that even if we include the backreaction of the condensate, all terms in the Hamiltonian will be

written in terms of the operators (4.10) and thus the canonical structure will be unchanged.
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4.3 SU(3) giant magnons?

A natural question to ask at this point is whether we can match the matrix model Hamil-

tonian (4.21) at finite L with some sort of SU(3) giant magnon solution in the string theory

side. In general one would expect that in the limit nl + ml → ∞ each X string bit would

correspond to a giant magnon configuration connecting two null geodesics of the form,

Z = r1e
it , Y = r2e

it , r2
1 + r2

2 = 1 , (4.26)

one for each condensate to the left and right of the string bit.8

Note however that these 1/4 BPS condensates do not correspond to the Giant Magnons

with multiple angular momenta studied recently in the literature [43 – 45] which represent

bound states in the operator language.

The states (4.5) are very restricted if we ignore the backreaction to the condensates.

Therefore, we can only expect a matching for some very special configurations. In particular

one intuitively expects that configurations for which the ends of the giant magnon are at

different radii rα are unstable and thus would require the understanding of the backreaction

since on the dual gauge theory, one would have Z and Y fields flowing from one condensate

to the next. We should then consider configurations for which rα is the same at each site.

In the dual string theory this would correspond to giant magnons connecting the same null

trajectory.

The classical limit of the energy formula (4.21) for these special states is,

Estring bit =

√
λ

π

√

r2
1 sin2

(

∆φ1

2

)

+ r2
2 sin2

(

∆φ2

2

)

. (4.27)

It turns out that with our simple ansatz for the classical string (see below), the matching

with this quadratic formula only works for a subset of these states: those with ∆φ1 = ∆φ2.

These can be considered as “rotations” of the usual SU(2) giant magnons. This restricted

matching is hardly surprising since only in this case the spacetime probed by the string is

actually flat. More generally, the backreaction to the string bit should take into account

the curvature of the sphere and correct the naive square root form (4.27).

Let us now turn our attention to the classical string theory. We will consider strings

moving on R × S4 but for simplicity we restrict the motion on the S3 ⊂ S4 as follows:

Z = r1 sin[ψ(σ)]ei(τ+φ1(σ)) , Y = r2 sin[ψ(σ)]ei(τ+φ2(σ)) , X = cos[ψ(σ)] . (4.28)

After defining new coordinates φ1 = φ+ + φ− and φ2 = φ+ − φ−, the Nambu-Goto

action in the static gauge t = τ becomes,

SNG =

√
λ

2π

∫

dτdφ+

√

x′2 + x2
[

1 + 2aφ′
− + φ′2

−(1 − bx2)
]

, (4.29)

8We can consider the more general null trajectories Z = r1e
iω1t, Y = r2e

iω2t with r2

1ω
2

1 + r2

2ω
2

2 = 1, but

this is the same as a redefinition of ri. Therefore we will set ωi = 1 without loss of generality.
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where x = sin ψ, a = r2
1 − r2

2, b = 4r2
1r

2
2 and the derivative is with respect to φ+. The

equations of motion are,

φ′
− =

αG − ax2

x2(1 − bx2)
, (4.30)

u(x)G
d

dx

(

u(x)

G

)

= x
[

1 + aφ′
− + φ′2

−(1 − 2bx2)
]

, (4.31)

where

G = x

√

a2x2 − (u2 + x2)(1 − bx2)

α2 − x2(1 − bx2)
, (4.32)

u = dx/dφ+ and α is an integration constant. Therefore we can reduce the problem to a

non-linear ODE for u(x) .

Let us now consider the special case of r1 = r2 = 1/
√

2. One can easily show that the

reality of G implies that α = 0 and so φ′
− = 0. The equations of motion reduce exactly to

the ones for the SU(2) giant magnon. The energy is [22],

E|r1=r2
=

√
λ

π

∣

∣

∣

∣

sin

(

∆φ+

2

)∣

∣

∣

∣

, (4.33)

where ∆φ1 = ∆φ2 = ∆φ+.

One can also show that setting α = 0 implies r1 = r2 = 1/
√

2. This follows from the

reality of u(x). Setting α = 0 and integrating the resulting equations of motion gives

u(x) = |b|x
2(1 − x2)

1 − bx2

√

1 − bx2
min

x2
min(1 − x2

min)
− 1 − bx2

x2(1 − x2)
, (4.34)

where xmin is the turning point. At the boundary x = 1, the reality of u(x) requires b = 1

which in turn implies r1 = r2 = 1/
√

2.

Now lets study the solutions with α 6= 0. For these strings, the equation of motion for

u(x) is highly complicated. However it turns out that it has a very simple solution: the

Giant Magnon of [22]. To see this, we first note that the boundary condition u(x = 1) is

actually determined by the EOM. When we set x = 1 in (4.31) all dependence on u′(x)

drops and one is left with an equation for u(1):

u(1) =
1

α

√

a2 − α2 , (4.35)

where we need sign(α) = sign(a), and a2 ≥ α2. This last inequality also follows from the

reality of G at the boundary x = 1.

We can now relate this to the Giant Magnon solution in [22] for which,

u(x) =
x2

xmin

√

1 −
(xmin

x

)2
. (4.36)

Comparing (4.36) with (4.35) we find that α = axmin. With α now determined by the

turning point xmin we can easily check that (4.36) satisfies (4.31). Therefore, as pointed
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out before, the solutions that we have found are just rotations of the Giant Magnon of [22].

Nevertheless they are consistent with the interpretation in terms of 1/4 BPS condensates.

This is because the ends of the Giant Magnon travel along null geodesics in S3 which carry

two angular momenta corresponding to the two fields Z and Y in the condensate, which is

itself a rotation of the 1/2 BPS condensate.

The generalization to 1/8 BPS condensates should be obvious by now. These will

be of the form Tr({XnY mZp} · · · ) but since there are no transverse excitations left, the

inclusion of the backreaction is unavoidable. The eigenvalue distribution turns into a

singular S5 ⊂ R
6 with radius r0 =

√
N/2. In this case it is perhaps more useful to use a

SO(6) invariant notation as in [21]. In this case, the dispersion relation in any direction

a = 1, . . . , 6 is,

wa
ij =

√

1 +
λ

(2π)2
|~xi − ~xj |2 , (4.37)

where ~x2
i = 1 are the coordinates in the S5.

5. Backreaction to BPS condensates

To simplify the discussion we can look at the 1/4 BPS condensates of the SU(2) sector.

That is consider operators of the form

Tr(Y {Zn1Y m1}Z{Zn2Y m2} · · · ) . (5.1)

This way we can work with the simpler matrix model (3.9). The proposal is that we

should expand around the “classical” configuration of commuting matrices [Y,Z] = [Z, Z̄ ] =

[Y, Ȳ ] = 0 in the action (3.9) as we did for the SU(3) sector. Then the two possible

excitations Y and Z outside the condensates will be described by the backreaction terms

δY and δZ in the matrix model.

In this case it is difficult to make comparisons with the string theory dual because,

as we will see, the number of excitations outside the condensates is not conserved. We

can, however try to match the qualitative picture we expect from a formal field theory

calculation using the operators (5.1). In the limit, ni,mi → ∞ we again expect that the

“impurities” outside the condensates will not interact with each other. On the other hand,

we expect only interactions between impurities and the condensates. First, lets consider

the quadratic fluctuation around the commuting background.

Expanding Zα → Zα + Yα where Zα is the commuting background, one finds the

following quadratic Hamiltonian (after diagonalizing the background)

H(2) =
∑

i,j

(πα)ji (π̄α)ij + Mαβ
ij (Yα)ji (Ȳβ)ij , (5.2)

where,

Mαβ
ij =

(

1 + α|zij |2 −αzij ȳij

−αz̄ijyij 1 + α|yij |2

)

(5.3)

and α = λ/(2π)2, zij = zi − zj and similarly for y.
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Naively one might think that the mass matrix can be diagonalized. However, we need

to be very careful with the gauge invariance of the states. Diagonalizing the mass matrix

means that we make a change of basis that depend on the background. On the other hand,

any change of basis must be of the form,

(Yα)ji =
∑

β

fβ
ij(φβ)ji , (5.4)

where φβ are the (normalized vectors) that diagonalize the mass matrix and, by gauge in-

variance, fβ
ij must only depend on positive powers of zij and yij (and their conjugates). Di-

agonalizing the mass matrix one finds the following eigenvectors and corresponding masses:

(φ1)
j
i =

1
√

|zij |2 + |yij |2
(

zij

−yij

)

, M2
1 = 1 + α(|zij |2 + |yij|2) (5.5)

(φ2)
j
i =

1
√

|zij |2 + |yij |2
(

ȳij

z̄ij

)

, M2
2 = 1 (5.6)

Inverting these relations one finds for example,

(Y1)
j
i =

1
√

|zij |2 + |yij|2
(z̄ij(φ1)

j
i + yij(φ2)

j
i ) , (5.7)

which is not allowed by gauge invariance. Even if we try to avoid this by not normalizing the

eigenvectors one always runs into an ill defined square root at some point of the procedure

(when defining the oscillator operators). This is telling us that H(2) is really an interacting

Hamiltonian.

Using the usual oscillator basis we find H(2) = H
(2)
0 + H

(2)
int , where

H
(2)
0 = wα

ij(A
†
α)ji (Aα)ij , (5.8)

H
(2)
int = − αzij ȳij

2
√

wy
ijw

z
ij

(A†
y)

j
i (Az)

i
j + h.c. , (5.9)

where wy
ij =

√

1 + α|zij |2 etc. and we are taking expectation values on holomorphic states.

Therefore, we observe that the interaction term represents the process of interchanging an

“impurity” outside the condensate with one of the fields of the condensate (with opposite

polarization):

Tr(· · ·Z{ZnY m} · · · ) ↔ Tr(· · · Y {Zn+1Y m−1} · · · ) . (5.10)

There are also cubic and quartic interactions. Lets consider the cubic ones. These do

not preserve the number of impurities. On holomorphic states these interactions take the

following form:

H(3) =
αzij

r0
(Ã†

Y )ji [ÃY , ÃZ ]ij +
αyij

r0
(Ã†

Z)ji [ÃZ , ÃZ ]ij + h.c. , (5.11)

where for simplicity of notation we defined the rescaled operators (Ãα)ji = (Aα)ji/
√

2ωα
ij .

Furthermore, we have assumed normal ordering of the operators and the extra 1/r0 will

be canceled since we loose/gain an extra field in the operator.
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We see that these interactions involve the absorption/emission of one impurity from

the condensate. For example,

Tr(· · ·Z{ZnY m}Y · · · ) ↔ Tr(· · ·Z{ZnY m+1} · · · ) . (5.12)

Note, however, that the interaction involves both fields Z and Y at each side of the con-

densate. This prevents the creation of a single impurity out of the vacuum:

Tr({ZnY m}) → Tr({ZnY m−1}Y ) . (5.13)

This matches our intuition from the Bethe Ansatz since there we must have zero total

momentum along the trace (by cyclicity) and therefore we need at least two Bethe roots.

Moreover, we expect that turning on a single commutator gives zero by the cyclicity of the

trace:

Tr({ZnY m}) → Tr([{ZnY m−1}, Y ]) = 0 . (5.14)

Finally we have the quartic vertex that involve the (long range) interaction between

the two impurities at each side of a condensate:

H(4) = 2α Tr[Ã†
Z , Ã†

Y ][ÃY , ÃZ ] , (5.15)

where we have included the additional N that comes from the extra close loop in the

Feynman diagram. Of course we expect higher commutators from integrating out the

higher modes on the sphere.

It is easy to generalize this discussion to the SU(3) sector. For these operators we

cannot avoid the inclusion of the backreaction and of the additional interactions from the

D-terms. Therefore to fully understand the SU(3) sector we need to develop new techniques

that can deal with lattices with varying number of sites. Note that this problem is already

familiar in the study of Giant Gravitons [24] and multiple trace operators in SYM [46].

We do not know how to do this at this moment. But once this is understood we could

calculate quantum corrections to the special states studied in the previous section.

5.1 Higher interactions and the strong coupling limit

Now that we have some experience in defining the expansion around commuting BPS con-

densates we would like to explain why this is in fact a strong coupling expansion and when

does it breaks down. In other words, we want to understand under what circumstances,

the quandratic (or cubic) approximation is a good one.

The secret to answer this question lies in the form of the creation/annihilation basis

defined above. Note that the relation between the creation/annihilation operators and the

matrix model coordinates is,

(Yα)ji =
1

√

2wα
ij

[(A†
α)ji + (Āα)ji ] ∼ O

(

1

(1 + λ|~xi − ~xj|2)1/4

)

. (5.16)

Therefore, if we consider excitations that join two eigenvalues whose distance |~xi−~xj|2
is fixed in the limit λ → ∞, then all interactions involving higher powers of the matrix
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model coordinates will be naturally suppressed as,

Tr(Y n) ∼ 1

λn/4
. (5.17)

Of course, we only expect higher commutators so we do not correct the quadratic potential.

Moreover, at least for the SU(2) sector, the higher interactions must be constrained so we

do not spoil the quadratic dispersion relation. For example, suppose we had a higher

interaction term like c1g
4
YM Tr|[Z, [Z, Y ]]|2. This would modify our dispersion relation as,

ωij =

√

1 +
λ

(2π)2
|zi − zj |2 + c1λ2|zi − zj |4 →

√

1 +
λ

π2
sin2

(p

2

)

+ 16c1λ2 sin4
(p

2

)

.

(5.18)

We believe that this restriction will come naturally from using the supersymmetry

that underlines the derivation of the reduced matrix model. In fact, the magnon dispersion

relation that enters the Bethe Ansatz was originally derived using SUSY alone [46]. It

would be very interesting to integrate out higher spherical harmonics directly from SYM

on R×S3, and confirm that SUSY restricts the form of the resulting reduced matrix model

(at least to leading order in the Yang-Mills coupling).

Now, note that keeping fixed the distance between the eigenvalues is just the Hofman-

Maldacena limit [22] and it was the limit studied above. As an example, consider the

quartic interaction V4 ∼ g2
YM Tr|[Yα, Yβ ]|2. It is easy to see that this will naturally be of

O(1) under this limit, while the quadratic and cubic interactions are of O(
√

λ). It would

be interesting to compute the one-loop correction to the matrix model (3.9) for the SU(2)

sector and verify that the new interaction is indeed suppressed.

On the other hand, we can try to define the more familiar BMN limit using the matrix

model. In this case we need to take λ|~xi − ~xj |2 = fixed ¿ 1. This is the limit where we

consider short string bits first and then take the λ → ∞ limit. For example, in the SU(2)

sector we first take L → ∞ first and so, |~xi − ~xj|2 → |∂σ~x|2/L2 ∼ O(1/L2). We see that

in this limit every higher commutator interaction to the matrix model will be relevant and

thus our quadratic approximation is invalidated. This explains why our model is so much

different from the usual one-loop spin chain. It is because our model is well defined in the

opposite limit.

Nevertheless, the lack of interactions between the Y impurities in the SU(2) model

makes it possible to match the string theory result at one loop in λ as we did in section

3. At higher loops we do not know if the matching requires corrections to the quadratic

Hamiltonian.

What about 1/n corrections? One can hope to get a better understanding of these in

the SU(2) sector. For that we need to take into account the backreaction δZ in the matrix

model. However it can be that these corrections are entangled with the 1/
√

λ corrections.

In any case, expanding around the normal matrix background should be regarded as an

asymptotic expansion valid for BPS condensates with large angular momentum. It would

be interesting to study this issue further.
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6. Discussion

In this article we have attempted to clarify the relation between the reduced matrix model

approach to calculate anomalous dimensions, and the usual operator mixing problem. This

was done in terms of what we called “BPS condensates”. These are long words in the

scalar operators that look like sections of an otherwise BPS operator. In the matrix model

these condensates were interpreted as a classical background which we use to define the

perturbative expansion. In the dual string theory they represent (in a particular gauge) a

infinitesimal section of a string with large angular momenta that localizes on a null geodesic

on the S5. Our method of expanding around a background of normal commuting matrices

turns out to be a good approximation in the limit of large angular momentum on the

sphere.

This interpretation allow us to match some well known string theory results in the

limit where the condensates carry infinite angular momentum. For the SU(2) sector we

were able to match the sigma model Hamiltonian of the dual string and its canonical

structure with the matrix model Hamiltonian of the quadratic fluctuations around the 1/2

BPS condensates. This was done in the limit where we have giant magnons [22] and fast

rotating strings [5]. The constrained canonical structure found in the matrix model also

made clear why the infinite momentum limit correspond to a localization of the string

on the equatorial S1 of the S5. Corrections to this limit are harder to understand since

they require an understanding of the backreaction of the BPS condensates and perhaps the

1/
√

λ corrections.

For the SU(3) sector the matching was limited by the fact that we need to understand

the backreaction to the BPS condensates in the matrix model even in the limit of infinite

angular momentum. Nevertheless, we were able to match the canonical structure and the

presence of SU(3) giant magnons that are in a a sense “rotations” of the usual SU(2) giant

magnon. Finally, we explained why the reduced matrix model is more naturally defined in

the strong coupling limit of the gauge theory.

So far, significant evidence has been accumulated that the effective Hamiltonian for

states of N = 4 on R × S3 dual to holomorphic scalar operators on R
4 is described by a

reduced model of matrix quantum mechanics [12, 16, 17, 19 – 22]. What is really needed

at this moment is a formal derivation of the matrix model at strong coupling. We believe

that the secret lies in expanding around (nearly) highly supersymmetric states. This is

where the BPS condensates can be very useful, specially in the infinite momentum limit.

For example, for 1/2 BPS condensates of infinite angular momentum, we can focus on a

single transverse excitation Y in an infinite “sea” of Z fields: O ∼ · · ·ZZZZY ZZZZ · · · .
The Feynman diagrammatics should greatly simplify by the fact that if the Y was changed

for a Z field, all the diagrams must add to zero by supersymmetry. Of course, it would be

nice to derive the matrix model without resorting to the usual diagrammatic calculations

but instead integrating out higher spherical harmonics on the S3.

Understanding the operator mixing problem in terms of a reduced matrix model can be

used as an alternative route to using integrability in testing the AdS/CFT correspondence.

This is because, as we saw, one can match directly the Hamiltonian of the dual string
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and its canonical structure instead of having to find its spectrum. Nevertheless it would

be interesting to understand the emergence of integrable structures in the language of the

reduced matrix model. In fact, it is very useful to calculate the scattering phase for the

string bits in the SU(2) sector with the quadratic Hamiltonian (3.28). Perhaps one could

match the phase calculated in [22] using the sine-Gordon model in certain limit.
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A. Anti-normal ordering

In this section we prove the identity,
∫

dΩ3

Vol(S3)
ψn1,n2

(Y,Z)∗ZnZ̄mY kȲ lψn′
1
,n′

2
(Y,Z) = 〈n1, n2|◦◦(Ẑ†)nẐm(Ŷ †)kŶ l◦

◦|n′
1, n

′
2〉 ,

(A.1)

where the operators in the r.h.s. were defined in (4.10). Now, we can always identify the

result of the integration with an effective operator,

[Zn1Z̄m1Y n2 Ȳ m2 ]int|ñ1, ñ2〉 '
cñ1+n1−m1,ñ2+n2−m2

cñ1,ñ2

(cñ1+n1,ñ2+n2
)2

|ñ1+n1−m1, ñ2+n2−m2〉 , (A.2)

where,

cn,m =

√

(2 + n + m)!

2n!m!
. (A.3)

All we need to do now is to match the r.h.s. of (A.2) with the result of the anti-normal

ordered form of the dual operators (4.10). For simplicity we will do this only in the case

where ni − mi > 0. The other cases follow similarly. For the integrations we will use the

identity,

cñ1+n1,ñ2+n2
= cñ1,ñ2

n1
∏

k=1

1√
ñ1 + k

n2
∏

l=1

1√
ñ2 + l

n1+n2
∏

s=1

√

2 + ñ1 + ñ2 + s . (A.4)

Therefore, we can write the r.h.s. of (A.2) as,

cñ1+n1−m1,ñ2+n2−m2
cñ1,ñ2

(cñ1+n1,ñ2+n2
)2

=

n1−m1
∏

k=1

√

ñ1 + k

n1
∏

k=n1−m1+1

(ñ1 + k)

×
n2−m2
∏

l=1

√

ñ2 + l

n2
∏

l=n2−m2+1

(ñ2 + l)

×
n1−m1+n2−m2

∏

s=1

1√
2 + ñ1 + ñ2 + s

×
n1+n2
∏

s=n1−m1+n2−m2+1

1

2 + ñ1 + ñ2 + s
. (A.5)
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It is now straightforward to verify that one gets the same result using the anti-normal

ordering form of the operators (4.10): Ẑm1Ŷ m2(Ẑ†)n1(Ŷ †)n2 |ñ1, ñ2〉 in the case ni−mi > 0.

B. SU(3) string action

Here we derive the action for fast rotating strings in the SU(3) sector (4.24). As usual, we

start with the Polyakov action in momentum space [40],

Sp =

√
λ

4π

∫

dτ

∫ 2π

0
dσ

(

pµ∂0x
µ +

1

2
A−1 [Gµνpµpν + Gµν∂1x

µ∂1x
ν ] + BA−1pµ∂1x

µ

)

,

(B.1)

where A =
√−gg00, B =

√−gg01 and gab is the worldsheet metric.

We now consider string moving in R × S5 with the following parametrization:

t = τ , X =

√

η

1 + η
eiϕ , Y =

r2√
1 + η

ei(τ+φ2) , Z =
r1√
1 + η

ei(τ+φ1) . (B.2)

The metric in these coordinates read,

ds2 = − η

1 + η
dt2 +

1

1 + η

[

2dt(r2
1dφ1 + r2

2dφ2)+
dη2

4η
+

∑

α=1,2

(dr2
α + r2

αdφ2
α)+ ηdϕ2

]

. (B.3)

We want to use the remaining gauge freedom to distribute the angular momentum in

ϕ uniformly along the string. This is appropriate to compare with the operators (2.7). We

have that,

L =

√
λ

4π

∫ 2π

0
dσpϕ =

√
λ

2
pϕ . (B.4)

We want to expand the action at first non-trivial order at large pϕ.

The Virasoro constraints that follow from (B.1) are,

Gµνpµpν + Gµνx′µx′ν = 0 , (B.5)

pµx′µ = 0 . (B.6)

We can now solve for pt using (B.5),

pt = pφ1
+ pφ2

−
√

Λ + Gijx′ix′j +

(

1 + η

η

)

p2
ϕ , (B.7)

where,

Λ = (pφ1
+ pφ2

)2 + Gijpipj +

(

η

1 + η

)

pix
′i

p2
ϕ

, (B.8)

and i, j = η, r1, r2, φ1, φ2 and we have used (B.6) to solve for ϕ′.

We can now plug the value of pt calculated above back into the action. We get an

effective action in terms of the momenta pi. Since the momenta enter only algebraically
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into the action, we can easily solve for them using their equations of motion. Plugging the

result back into the action we get,

Sp = −
√

λ

4π

∫

dτ

∫ 2π

0
dσ

√

(

Gijx′ix′j +
1 + η

η
p2

ϕ

)

(1 − gij ẋiẋj) , (B.9)

where,

gij =
1

2

∂2Λ

∂pi∂pj
, (B.10)

and ẋφα ≡ 1 + φ̇α.

One can make a systematic expansion at large pϕ where one gets an effective action

which is linear in the ẋi and one eliminates higher powers of the time derivatives in terms

of higher spatial derivatives [40, 41]. Here we do not need to follow this procedure in detail

since we want the leading order at large pϕ. Therefore, as usual we assume that all time

derivatives are of order ∼ 1/p2
ϕ. Then expanding the action (B.9) at leading non-trivial

order we find the result (4.24). Higher order corrections will only affect the form of the

Hamiltonian but not the canonical structure.
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